Really? Well. Apparently Bootstrapping Improves the Performance of Sarcasm and Nastiness Classifiers for Online Dialogue
نویسندگان
چکیده
More and more of the information on the web is dialogic, from Facebook newsfeeds, to forum conversations, to comment threads on news articles. In contrast to traditional, monologic Natural Language Processing resources such as news, highly social dialogue is frequent in social media, making it a challenging context for NLP. This paper tests a bootstrapping method, originally proposed in a monologic domain, to train classifiers to identify two different types of subjective language in dialogue: sarcasm and nastiness. We explore two methods of developing linguistic indicators to be used in a first level classifier aimed at maximizing precision at the expense of recall. The best performing classifier for the first phase achieves 54% precision and 38% recall for sarcastic utterances. We then use general syntactic patterns from previous work to create more general sarcasm indicators, improving precision to 62% and recall to 52%. To further test the generality of the method, we then apply it to bootstrapping a classifier for nastiness dialogic acts. Our first phase, using crowdsourced nasty indicators, achieves 58% precision and 49% recall, which increases to 75% precision and 62% recall when we bootstrap over the first level with generalized syntactic patterns.
منابع مشابه
Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web
Automatic detection of emotions like sarcasm or nastiness in online written conversation is a difficult task. It requires a system that can manage some kind of knowledge to interpret that emotional language is being used. In this work, we try to provide this knowledge to the system by considering alternative sets of features obtained according to different criteria. We test a range of different...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملCreating and Characterizing a Diverse Corpus of Sarcasm in Dialogue
The use of irony and sarcasm in social media allows us to study them at scale for the first time. However, their diversity has made it difficult to construct a high-quality corpus of sarcasm in dialogue. Here, we describe the process of creating a largescale, highly-diverse corpus of online debate forums dialogue, and our novel methods for operationalizing classes of sarcasm in the form of rhet...
متن کاملGetting Reliable Annotations for Sarcasm in Online Dialogues
The language used in online forums differs in many ways from that of traditional language resources such as news. One difference is the use and frequency of nonliteral, subjective dialogue acts such as sarcasm. Whether the aim is to develop a theory of sarcasm in dialogue, or engineer automatic methods for reliably detecting sarcasm, a major challenge is simply the difficulty of getting enough ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.08572 شماره
صفحات -
تاریخ انتشار 2013